

• Continuous signals

Acknowledgement: Some figures in this presentation are borrowed from the book "The Fast Fourier Transform and its Applications", by E. Oran Brigham. These figures are used here only for educational purpose.

- Continuous signals
- Representations
 - Polynomial
 - Fourier series
 - Fourier Transform

- Continuous signals
- Representations
 - Polynomial
 - Fourier series
 - Fourier Transform
 - Convolution
 - Diracs, rect(), sinc(), train of Diracs
 - Frequency, Bandwidth

- Continuous signals
- Representations
 - Polynomial
 - Fourier series
 - Fourier Transform
 - Convolution
 - Diracs, rect(), sinc(), train of Diracs
 - Frequency, Bandwidth
- Sampling
 - Nyquist rate intuition and theory

- Continuous signals
- Representations
 - Polynomial
 - Fourier series
 - Fourier Transform
 - Convolution
 - Diracs, rect(), sinc(), train of Diracs
 - Frequency, Bandwidth
- Sampling
- Interpolation or reconstruction
 - Aliasing, oversampling, undersampling

Processing discrete signals

Processing discrete signals

Processing discrete signals

- Can we take with us tools we developed in continuous domain to discrete domain?
 - Representations: polynomials, Fourier transform, ...

Discrete Fourier Transform

• Let's proceed through visualization.

• truncation

• periodization

• truncation

• periodization

truncation

•

Steps

• sampling

truncation

• periodization

Mathematical interpretation on blackboard

Summary

- A new representation for discrete-time signals
- Taking the learning of Fourier transform to discrete-time domain!
- Discrete Fourier Transform vectors multiplication summation
- No integral No infinite samples
- Remember the link using bandwidth (2B), duration (L) and N (number of samples)